
WQuery 0.4.0

User Guide (outdated)

Marek Kubis

WQuery 0.4.0: User Guide (outdated)
Marek Kubis
Copyright © 2007-2011 Marek Kubis

iii

Table of Contents
Preface .. vi
1. Getting started .. 1

Prerequisites .. 1
Download .. 1
Installation .. 1
Running the console ... 1
WQuery basics ... 3
Next steps ... 6

2. Language reference ... 7
Data types ... 7

Basic data types ... 7
Tuples .. 7
Relations ... 7

Generators ... 8
Paths .. 11
Relational expressions ... 11
Filters ... 12

Dataset-oriented conditional operators .. 13
Value-oriented conditional operators .. 14
Logic operators .. 14

Functions ... 15
Arithmetics .. 16
Path expressions ... 16
Imperative expressions ... 17

Emissions .. 17
Iterators ... 17
Conditionals ... 18
Blocks .. 19
Assignments ... 19

3. Advanced topics .. 21
Embedding the interpreter .. 21
Registering custom wordnet loaders ... 21
Registering custom functions .. 21
Using custom emitters ... 21

A. Tools reference .. 22
WGUIConsole .. 22
WConsole .. 22

B. Built-in functions .. 23

iv

List of Tables
2.1. Obligatory relations. ... 8
2.2. Relational operators. .. 12
2.3. Dataset-oriented conditional operators. .. 13
2.4. Value-oriented conditional operators. .. 14
2.5. Value-oriented conditional operators. .. 15
2.6. Arithmetic operators. ... 16
2.7. Path operators .. 16
B.1. Scalar functions. .. 23
B.2. Aggregate functions. ... 23

v

List of Examples
2.1. Boolean generators ... 8
2.2. Integer generators ... 8
2.3. Float generators ... 9
2.4. String generators .. 9
2.5. Generating all word forms ... 9
2.6. An unique word sense generator .. 10
2.7. A non-unique word sense generator ... 10
2.8. Generating all word senses ... 10
2.9. A word forms to synsets generator ... 10
2.10. A word senses to synsets generator .. 10
2.11. Generating all synsets .. 10
2.12. A simple path ... 11
2.13. Another simple path .. 11
2.14. Selectors .. 11
2.15. A transitive closure ... 12
2.16. A transitive closure alias .. 12
2.17. A simple filter .. 12
2.18. Backward reference ... 13
2.19. Implicit reference .. 13
2.20. Filter generator ... 13
2.21. Dataset comparisons .. 14
2.22. Value comparisons .. 14
2.23. Logic operations ... 15
2.24. Sample scalar functions .. 15
2.25. Sample aggregate functions ... 16
2.26. Sample arithmetic operations ... 16
2.27. Path expressions ... 17
2.28. An emission ... 17
2.29. An iterator ... 18
2.30. The sort function ... 18
2.31. The distinct function .. 18
2.32. A conditional ... 18
2.33. An else block ... 19
2.34. A block ... 19
2.35. An assignment .. 20
2.36. Hidden binding ... 20

vi

Preface
WQuery is a domain specific query language designed to process wordnet-like lexical ontologies. It
operates on wordnet-related terms like synsets, word senses, word forms etc. It is especially useful for
dealing with elaborate querying tasks like searching for cycles in semantic relations or calculating average
depth of synsets participating in hypernymy hierarchy. WQuery operates on platforms that provide Java
Runtime Environment and works with wordnets stored in XML files. It may be used as a standalone
application or as an API to a lexical ontology in Java based systems.

This document is a work in progress. Some parts are marked by the To Be Written label. The document
refers to WQuery 0.5.0. The complete user guide will be distributed with WQuery 1.0.0.

1

Chapter 1. Getting started

Prerequisites
WQuery requires Java Runtime Environment (JRE) version 1.5 or higher. The latest JRE can be found at
http://java.sun.com/javase/downloads/index.jsp .

Download
The latest version of WQuery may be downloaded from http://www.wquery.org/download.html.

Installation
Unzip the downloaded package anywhere. WQuery is ready to use.

Running the console
Change into the unzipped directory and run wguiconsole.bat (wguiconsole on Linux). You will
see the following screen.

From the File menu pick the Load Wordnet... option and choose the file that contains a wordnet.

http://java.sun.com/javase/downloads/index.jsp
http://www.wquery.org/download.html

Getting started

2

Type count({}) into the text field in the upper part of the window in order to find how many synsets
exist in the loaded wordnet.

Click the Execute button or hit Alt+E. A result will appear in the text field in the lower part of the window.

Getting started

3

WQuery basics
WQuery operates on wordnet related terms like synsets, word senses and words. For example to check
whether an ontology1 contains the word car one may simply write

car

The system answers

car

If you type the string a1b1c1d1 which is not a proper word form in SampleNet the system will answer

(no result)

If you put a1b1c1d1 in backquotes like in the query below

`a1b1c1d1`

The system will not treat a1b1c1d1 as a word form but as an arbitrary character string and will return it
to the output.

To check if SampleNet contains the second noun sense of person you may type

person:2:n

In order to find all synsets that contain the word form person one may surround that word with curly
brackets

{person}

1For the purpose of this section it is assumed that you have loaded an ontology from the file samplenet.xml distributed with WQuery. This
ontology has been derived from Princeton WordNet by selecting synsets which are used by WQuery test suite (see samplenet.xml for Princeton
WordNet licensing conditions).

Getting started

4

The system returns

{ person:1:n individual:1:n someone:1:n somebody:1:n mortal:1:n soul:2:n }
{ person:2:n }
{ person:3:n }

As you see synsets are represented in the output as lists of word senses surrounded with curly brackets.

Beside wordnet-specific data types you may also use in queries:

• integers

1 -7

• floating point numbers

3.4 5e-2

• boolean values

true false

Datasets2 may be transformed using dot operator followed by a relation name.3 To find all hypernyms of
synsets that contain the word form person you may type

{person}.hypernym

and to find all glosses of those hypernyms you may submit the following query

{person}.hypernym.desc

If you want to retrieve hypernyms of person synsets together with their glosses you have to surround
chosen path steps with the selection signs < and >.

{person}.<hypernym>.<desc>

By repeating dots you may apply a relation to the step that is located before the one that precedes the
relation step. For example to find person synsets together with their part of speech symbols and glosses
you may write

<{person}>.<pos>..<desc>

or

<{person}>.<desc>..<pos>

Note: Available relations

Relations are extracted from tags found in the wordnet file. For every subtag T of every SYNSET
tag found in the wordnet file the following rules are applied to extract relations:

1. If T equals ILR then the value of the type attribute becomes a relation name and the content of
T is interpreted as a synset identifier to which the relation points.

2. If T equals LITERAL or SYNONYM or WORD it is skipped.

2A dataset in WQuery is a bag (multiset) of objects that share the same type.
3Such expressions are called paths. Parts of paths separetad by sequences of dots are called steps.

Getting started

5

3. Otherwise the lowercased name of T becomes a relation name and the content of T is
interpreted as:

• a synset identifier

• or as a number (if it is not a valid synset identifier)

• or as a boolean value (if it is not a valid number)

• or as a character string (if it is not a valid boolean value).

Additional relations may be infered using relational operators. For example to find all hyponyms of synsets
that contain the word form var you may precede the hypernym relation with the inverse operator ^.

{car}.^hypernym

To find all transitive hypernyms of synsets that contain the word form car you may succeed the hypernym
relation with the transitive closure operator !.

{car}.hypernym!

To find all holonyms of synsets that contain the word form car regardless of the holonymy type you may
combine holonymy relations using the union operator |.

{car}.partial_holonym|member_holonym

More pleasant names may be assigned to relations by using the assignment operator =.

hypernyms=hypernym
hyponyms=^hypernym
holonyms=partial_holonym|member_holonym
gloss=def

Datasets may be filtered by providing a conditional expression between [and] signs. To find all noun
synsets that contain the word form car you shall type

{car}[type = `n`]

A filter is applied separately to every element of the predeceasing dataset. You may refer to the element
which is passed to the filter by using the back reference operator #. The query below returns all hypernyms
of synsets that contain the word form person except the one that contains the second noun sense of the
word form being.

{person}.hypernym[# != {being:2:n}]

WQuery provides a set of built-in functions that operate on values of datasets. For example to count synsets
that contain the word form person you may use the function count as shown below.

count({person})

The complete list of built-in functions may be found in Appendix B, Built-in functions.

Paths may be combined together using dataset union, intersection and difference. You may find all person
synsets hypernyms together with all car synsets by using the union operator.

{person}.hypernym union {car}

The Cartesian product of datasets returned by two paths may be constructed using the comma operator.

Getting started

6

{person}, {car}

Beside the expressions presented above WQuery also has a set of imperative expressions like loops,
if-statements and assignments. The complete description of all WQuery expressions may be found in
Chapter 2, Language reference.

Next steps
Read Chapter 2, Language reference in order to master the WQuery language. Read Chapter 3, Advanced
topics to learn how to customize WQuery and embed it into your own applications. Consult Appendix B,
Built-in functions for a detailed list of functions available in WQuery.

7

Chapter 2. Language reference
Data types
Basic data types

There are six basic data types in WQuery: booleans, integers, floats, strings, word senses and synsets.

Booleans have one of two logic values either true or false. They are represented in query results as two
literals shown below.

true false

Integers are represented in query results as strings of decimal digits optionally prefixed with - sign.

123 -4 576 0

Floats (floating point numbers) are represented as strings of decimal digits followed by dot and at least
one decimal digit. Floats may also be prefixed with - sign.

3.0 -1.2 0.0 2.345

Strings (character data) are passed to the output without any modifications.

apple person man-eating shark

Word senses are represented as triples that consist of a word form, a sense number and a part of speech
symbol joined together with colons.

apple:1:n cold:2:a entail:3:v

Synsets are represented as lists of word senses joined together with whitespaces and surrounded with {
and } signs.

{ apple:2:n orchard apple tree:1:n Malus pumila:1:n }

Tuples
Tuples are finite, ordered collections. Every element of a tuple has to be an instance of a basic data type.
It is not possible to create a tuple that contains another tuple as an element.

A tuple is represented in a query result as a single line that consists of representations of tuple elements
joined together with spaces. For example a tuple that consists of the synset {apple:2:n} followed by
{person:3:n} and the word form car is written as

{ apple:1:n } { person:3:n } car

Relations
Let X and Y mean sets of values of basic data types T and U. Every subset of Cartesian product of X and
Y is called a relation with predecessor type T and successor type U.

WQuery refers to relations stored in a wordnet by their names. Table 2.1, “Obligatory relations.” describes
relations that are available in every wordnet loaded into WQuery. Additional relations are usualy retrieved
as described in Note: Available relations in Chapter 1, Getting started.

Language reference

8

Table 2.1. Obligatory relations.

Relation Predecessor type Successor type Meaning

a id b word sense string
b is an identifier
of word sense a

a id b synset string
b is an identifier

of synset a

a sensenum b word sense integer
b is a sense number

of word sense a

a senses b string word sense
a is a word form
of word sense b

a senses b synset word sense
b is a word

sense of synset a

a synsets b string synset
a is a word

form of synset b

a synset b word sense synset
a is a word

sense of synset b

a words b synset word sense
b is a word

form of synset a

a word b word sense string
a is a word form
of word sense b

Generators
A generator is an expression that represents a dataset of objects sharing the same basic data type.

Literals true and false generate datasets that contain exactly one boolean value.

Example 2.1. Boolean generators

wquery> true
true
wquery> false
false

A string of decimal digits generates a dataset that contains exactly one integer value. Two strings of
decimals joined together with .. operator generate a dataset that contains a range of integers.

Example 2.2. Integer generators

wquery> 123
123
wquery> 1..5
1
2
3
4
5

A string that represents a floating point number generates a dataset that contains exactly one float.

Language reference

9

Example 2.3. Float generators

wquery> 12.3
12.3
wquery> 12e3
12000.0
wquery> 12.3e3
12300.0

The content of the multiset generated by a character string depends on signs that surround the string.

• A dataset generated by a character string enclosed in single quotes contains that string if and only if it
is a valid word form in the loaded wordnet. Otherwise the generated dataset is empty.

• A dataset generated by a character string enclosed in back quotes always contains the surrounded string.

• A dataset generated by a character string enclosed in double quotes contains every word form from the
loaded wordnet that matches a regular expression defined by the surrounded string.

• A dataset generated by a character string that is not surrounded with any quotation marks has the same
content as a dataset generated from that string enclosed in single quotes.

Example 2.4. String generators

wquery> 'person'
person
wquery> `zzz333`
zzz333
wquery> zzz333
(no result)
wquery> "^zymol"
zymology
zymolysis
zymolytic
wquery> person
person

Note: Ordering in the output

One may notice in the example above that word forms generated by the "^zymol" expression
are sorted in the output. Sorting is by default applied to all query results except those that are
generated by constructs descibed in the section called “Imperative expressions”. Also if there
existed duplicated elements in the query result they would be removed before passing the result
to the output.

One may generate all word forms stored in the loaded wordnet by submitting two single quote signs without
any characters between then.

Example 2.5. Generating all word forms

wquery> ''
(...)

In order to generate a dataset that contains at most one word sense one may join a character string, a
sense number and a part of speech symbol with colons. The generated multiset will be empty if the loaded
wordnet does not contain requested word sense.

Language reference

10

Example 2.6. An unique word sense generator

wquery> 'person':1:n
person
wquery> 'zzzz':23:n
(no result)

If we omit in the expression above the second colon and the part of speech symbol then all word senses
with the given word form and sense number will be generated.

Example 2.7. A non-unique word sense generator

wquery> set:2
set:2:n
set:2:v
set:2:s

All word senses stored in the loaded wordnet may be generated by submitting two colon signs.

Example 2.8. Generating all word senses

wquery> ::
(...)

By surrounding an expression that returns a dataset of strings with { and } signs one may obtain a dataset
that consists of synsets that contain at least one word form represented by the enclosed expression.

Example 2.9. A word forms to synsets generator

wquery> {orange}
{ orange:2:n orangeness:1:n }
{ orange:1:n }
{ orange:3:n orange tree:1:n }
{ orange:4:n }
{ orange:1:s orangish:1:s }
wquery> {"^zymol"}
{ zymology:1:n zymurgy:1:n }
{ zymosis:1:n zymolysis:1:n fermentation:2:n fermenting:1:n ferment:3:n }
{ zymotic:1:a zymolytic:1:a }

The same holds for datasets of word senses.

Example 2.10. A word senses to synsets generator

wquery>
wquery> {apple:2:n}
{ apple:2:n orchard apple tree:1:n Malus pumila:1:n }
wquery> {apple:2}
{ apple:2:n orchard apple tree:1:n Malus pumila:1:n }

All synsets stored in the loaded wordnet may be generated by submitting { and } signs without any
expression between them.

Example 2.11. Generating all synsets

wquery> {}
(...)

Language reference

11

Paths
A path consists of a generator followed by zero or more transitions. Each transition begins with one or
more dots followed by a relation name. The generator and the following transitions are called steps. The
result of applying a transition that consits of k dots followed by the relation name R to an n-th step (1 <=
k <= n) expression on the left of the transition is a dataset {b| a in D and R(a,b)} where D is:

1. A dataset returned by the generator of the path if k = n.

2. A result of applying from the left to the right n - k transitions to the generator of the path if k < n.

For example to find all hypernyms of a synset that contains the word form car in its first noun sense one
may write

Example 2.12. A simple path

wquery> {car:1:n}.hypernym
{ motor vehicle:1:n automotive vehicle:1:n }

and to find all senses of hypernyms of the synset above one may write

Example 2.13. Another simple path

wquery> {car:1:n}.hypernym.senses
motor vehicle:1:n
automotive vehicle:1:n

By surrounding chosen path steps with < and > signs one may retrieve results of intermediate transitions.
The result of applying selectors to the chosen k steps consists of k-element tuples such that the i-th element
(1 <= i <= k) of a tuple belongs to the dataset generated by a subpath defined by all steps of the path that
precede the i-th > sign on the path. For example to find all triples that consist of a synset that contains the
word form car followed by its identifier and an identifier its hypernym one may write

Example 2.14. Selectors

wquery> <{car}>.<id>..hypernym.<id>
{ cable car:1:n car:5:n } 102934451 103079741
{ car:1:n auto:1:n automobile:1:n machine:6:n motorcar:1:n } 102958343 103791235
{ car:2:n railcar:1:n railway car:1:n railroad car:1:n } 102959942 104576211
{ car:4:n elevator car:1:n } 102960352 103079741
{ car:3:n gondola:3:n } 102960501 103079741

As shown in the example above consecutive tuple elements are separated in the output with single spaces.

Relational expressions
A relational expression consists of one or more relations combined together with operators shown in
Table 2.2, “Relational operators.”. The relational expression may be used in a transition instead of a single
relation.

In order to find all transitive hypernyms of synsets that contain the word form person one may write

Language reference

12

Example 2.15. A transitive closure

wquery> {person}.hypernym!
{ entity:1:n }
{ physical entity:1:n }
{ organism:1:n being:2:n }
{ causal agent:1:n cause:4:n causal agency:1:n }
{ human body:1:n physical body:1:n material body:1:n soma:3:n build:2:n
 figure:2:n physique:2:n anatomy:2:n shape:3:n bod:1:n chassis:1:n
 frame:3:n form:5:n flesh:2:n }
{ grammatical category:1:n syntactic category:1:n }

Table 2.2. Relational operators.

Operator Expression Result

inversion ^r (b,a) such that (a,b) belongs to r

transitive closure r!
(a,b) such that (a,b) belongs to r or there exist a1, ..., ak such
that (a,a1), (a1,a2), ... (ak, b) belong to r

union r|q t such that t belongs to r or q

intersection r&q t such that t belongs to r and q

By using = operator one may assign a name to a relational expression and use it in the following queries.
For example one may define an alias for transitive hypernymy

thyper=hypernym!

and use it as shown in the query below

Example 2.16. A transitive closure alias

wquery> {person}.thyper
{ entity:1:n }
{ physical entity:1:n }
{ organism:1:n being:2:n }
{ causal agent:1:n cause:4:n causal agency:1:n }
{ human body:1:n physical body:1:n material body:1:n soma:3:n build:2:n
 figure:2:n physique:2:n anatomy:2:n shape:3:n bod:1:n chassis:1:n
 frame:3:n form:5:n flesh:2:n }
{ grammatical category:1:n syntactic category:1:n }

Filters
A filter is an expression placed after a path step to select some elements from the generated dataset. The
filter consists of a conditional expression surrounded with [and] signs. Each element of the dataset being
filtered is passed separately to the filter and may be referenced inside it by using # sign.

To find all synsets that contain the word form person except the one that contains that word form in its
thirdh noun sense one may write

Example 2.17. A simple filter

wquery> {person}[# != {person:3:n}]
{ person:1:n individual:1:n someone:1:n somebody:1:n mortal:1:n soul:2:n }
{ person:2:n }

Language reference

13

Objects that precede on the path the element that is analyzed in the current pass may be referenced by
repeating # sign.

..................................... The following query returns all hyponyms of synsets that contain the word form
person having the same number of words as their hypernyms one may wrtie

Example 2.18. Backward reference

wquery> {person}.hypernym[count(#.words)<count(##.words)]
{ organism:1:n being:2:n }
{ causal agent:1:n cause:4:n causal agency:1:n }

A reference may be omitted if it consists of exactly one # sign and is followed by at least one step. The
expression written above may be rephrased as follows

Example 2.19. Implicit reference

wquery> {person}.hyponyms[count(words) = count(##.words)]
{ organism:1:n being:2:n }
{ causal agent:1:n cause:4:n causal agency:1:n }

A filter may also be used independently as a boolean generator.

Example 2.20. Filter generator

wquery> [1 < 2]
true

The following subsections describe three types of operators that are allowed in filters.

Dataset-oriented conditional operators

The operators listed in Table 2.3, “Dataset-oriented conditional operators.” are binary operators that
compare pairs of datasets.

Table 2.3. Dataset-oriented conditional operators.

Operator Expression Result

dataset equality x = y true iff datasets generated by x and y are equal

dataset inequality x != y true iff datasets generated by x and y are not equal

dataset inclusion x in y
true iff the dataset generated by x is a subset of the one
generated by y

dataset proper
inclusion

x pin y
true iff the dataset generated by x is a proper subset of the
one generated by y

Example 2.21, “Dataset comparisons” consists of queries that involve dataset-oriented conditional
operators.

Language reference

14

Example 2.21. Dataset comparisons

wquery> [{person:1:n} = {person}]
false
wquery> [{person:1:n} in {person}]
true
wquery> [{person:1:n} pin {person}]
true
wquery> [{person} != {person}]
false

Value-oriented conditional operators
The operators listed in Table 2.4, “Value-oriented conditional operators.” are binary operators that are able
to compare only those datasets that contain at most one element. Compared elements have to belong to
the same data type.

The following rules hold while comparing two values:

• Numbers are compared using natural ordering.

• Strings are compared by assuming lexicographical order.

• The boolean value false is assumed to be lesser than true.

• The result of comparing synsets or word senses is undefined.1

Table 2.4. Value-oriented conditional operators.

Operator Expression Result

lesser than x < y
true iff x and y contain exactly one element and the element
in x is lesser than the one in y

lesser than
or equal

x <= y
true iff x and y contain exactly one element and the element
in x is lesser than or equal to the one in y

greater than x > y
true iff x and y contain exactly one element and the element
in x is greater than the one in y

greater than
or equal

x >= y
true iff x and y contain exactly one element and the element
in x is greater than or equal to the one in y

Example 2.22, “Value comparisons” consists of queries that involve some of value-oriented conditional
operators.

Example 2.22. Value comparisons

wquery> [person < individual]
false
wquery> [1 <= 1]
true
wquery> [true > false]
true

Logic operators
The operators listed in Table 2.5, “Value-oriented conditional operators.” may be used to combine
conditional expressions.

Language reference

15

Table 2.5. Value-oriented conditional operators.

Operator Expression Result

conjunction x and y true iff both x and y are true

disjunction x or y true iff x or y is true

negation not x true iff x is not true

Example 2.23, “Logic operations” presents expressions that involve logic operators.

Example 2.23. Logic operations

wquery> {}[car in words and gondola in words]
{ car:3:n gondola:3:n }
wquery> {}[car in words or gondola in words]
{ cable car:1:n car:5:n }
{ car:1:n auto:1:n automobile:1:n machine:6:n motorcar:1:n }
{ car:2:n railcar:1:n railway car:1:n railroad car:1:n }
{ car:4:n elevator car:1:n }
{ car:3:n gondola:3:n }
wquery> {}[car in words and not gondola in words]
{ cable car:1:n car:5:n }
{ auto:1:n automobile:1:n }
{ car:2:n railcar:1:n railway car:1:n railroad car:1:n }
{ car:4:n elevator car:1:n }

Functions
A call to a function consists of a function name followed by an expression surrounded with parentheses.
WQuery functions fall into two categories:

aggregate functions These functions are invoked directly on a dataset returned by the expression
between parentheses.

scalar functions These functions are invoked separately for every tuple that belongs to a
dataset returned by the expression between parentheses and the result is a
sum of results returned by all invocations.

The list of all built-in functions may be found in Appendix B, Built-in functions.

Example 2.24. Sample scalar functions

wquery> upper({car:1}.words)
AUTO
AUTOMOBILE
CAR
MACHINE
MOTORCAR
wquery> length({car:1}.words)
3
4
7
8
10

Language reference

16

Example 2.25. Sample aggregate functions

wquery> count({car:1}.words)
5
wquery> max({car:1}.words)
motorcar

Arithmetics
Arithmetic expressions in WQuery utilize paths and functions that return integers and floats.

Example 2.26. Sample arithmetic operations

wquery> 2 + 3
5
wquery> count({car:1}.words) + count({car:3}.words)
7
wquery> max(length({car}.words)) - min(length({car}.words))
9

Operators available in arithmetic expressions are shown in Table 2.6, “Arithmetic operators.”.

Table 2.6. Arithmetic operators.

Operator Expression Result

unary minus -x negation of x

unary plus +x unchanged value of x

addition x + y sum of x and y

subtraction x - y difference of x and y

multiplication x * y product of x and y

division x / y quotient of x and y

modulo x % y
remainder from division of x by
y

Path expressions
A path expression consists of one or more paths combined together using operators shown in Table 2.7,
“Path operators”.

Table 2.7. Path operators

Operator Expression Result

path union x union y union of datasets generated by x and y

path intersection x intersect y intersection of datasets generated by x and y

path difference x except y difference of datasets generated by x and y

path product x, y
a dataset that consists of all tuples (a1, ..., a k, b1, ..., bn)
such that (a1, ..., ak) belongs to a dataset generated by x and
(b1, ..., bn) belongs to a dataset generated by y

Language reference

17

Example 2.27. Path expressions

wquery> {car:1:n} union {car:3:n}
{ car:1:n auto:1:n automobile:1:n machine:6:n motorcar:1:n }
{ car:3:n gondola:3:n }
wquery> {car} intersect {car:1:n}
{ car:1:n auto:1:n automobile:1:n machine:6:n motorcar:1:n }
wquery> {car} except {car:2:n}
{ cable car:1:n car:5:n }
{ car:1:n auto:1:n automobile:1:n machine:6:n motorcar:1:n }
{ car:4:n elevator car:1:n }
{ car:3:n gondola:3:n }
wquery> {apple}, {set}
{ apple:1:n } { set:2:n }
{ apple:1:n } { determine:3:v set:2:v }
{ apple:1:n } { fixed:2:s set:2:s rigid:5:s }
{ apple:2:n orchard apple tree:1:n Malus pumila:1:n } { set:2:n }
{ apple:2:n orchard apple tree:1:n Malus pumila:1:n } { determine:3:v
 set:2:v }
{ apple:2:n orchard apple tree:1:n Malus pumila:1:n } { fixed:2:s
 set:2:s rigid:5:s }

Imperative expressions
Path expressions described in the previous section may be used to construct five types of imperative
expressions: emissions, iterators, conditionals, blocks and assignments.

Emissions
emit path_expr

An emission passes tuples generated by the path expression path_expr to the output.

Example 2.28. An emission

wquery> emit {person:1:n}.words
soul
individual
somebody
someone
mortal
person

Iterators
from var_decls in path_expr imp_expr

An iterator executes the imperative expression imp_expr for every tuple generated by the path expression
path_expr. Variables from the comma separated list var_decls are substituted with consecutive
elements of a tuple processed in the current pass. Those variables may be used as generators in imp_expr.
2

2Variable names are prefixed with $ sign.

Language reference

18

Example 2.29. An iterator

wquery> from $a in {person}.words emit $a
person
soul
individual
somebody
someone
mortal
person
person

In the example above the imperative expression built from an iterator and an emission returns a dataset that
is not sorted and contains duplicated elements. In order to sort a dataset one have to use the sort function.

Example 2.30. The sort function

wquery> from $a in sort({person}.words) emit $a
individual
mortal
person
person
person
somebody
someone
soul

Duplicates may be removed from a dataset by the distinct function.

Example 2.31. The distinct function

wquery> from $a in distinct(sort({person}.words)) emit $a
individual
mortal
person
somebody
someone
soul

Conditionals
if path_expr imp_expr

A conditional executes the imperative expression imp_expr if the path expression path_expr is true.

Note: Truth in WQuery

A path expression is considered to be false if it generates a dataset that is either empty or includes
exactly one tuple that consists entirely of boolean elements and at least one of those elements is
false. Otherwise the expression is considered to be true.

Example 2.32. A conditional

wquery> if [2 + 2 = 4] emit `ufff...`
ufff...

Language reference

19

A conditional may have also an optional else block which is executed if path_expr is not true. The
resulting conditional looks as follows

if path_expr imp_expr else else_expr

Example 2.33. An else block

wquery>
 if [bus in {car}.words]
 emit {bus}
 else
 emit `no "bus" word found in "{car}.words"`

no "bus" word found in "{car}.words"

Blocks

do imp_expr_1 ... impr_expr_n end

A block executes sequentially imperative expressions imp_expr_1 to imp_expr_n.

Example 2.34. A block

wquery>
do
 emit {person:3:n}
 emit car:2:n
 emit apple
end

{ person:3:n }
car:2:n
apple

Assignments

var_decls = path_expr

An assignment binds variables from the comma separated list var_decls to consecutive values of a
tuple generated by the path expression path_expr. The path_expr expression shall return exactly
one tuple.

Language reference

20

Example 2.35. An assignment

wquery>
do
 $a, $b = <{car:1:n}>.<desc>
 if [$b =~ `engine`]
 emit $a.words
end

machine
motorcar
automobile
auto
car

Variable bindings are accessible in all expressions that follow the assignment and are placed in the scope
of the block which surrounds it. Bindings in the inner block hide the ones defined in the outer blocks.

Example 2.36. Hidden binding

wquery>
do
 $a, $b = 1, 2

 do
 $b = 3
 emit $a
 emit $b
 end

 emit $a
 emit $b
end

1
3
1
2

21

Chapter 3. Advanced topics
This chapter covers topics important only in specific WQuery use cases.

Embedding the interpreter
WQuery may be easily embedded into your own application. The following libraries must be added to the
application classpath if you want to use WQuery:

• wquery-VERSION.jar

• scala-library-2.7.5.jar

• slf4j-api-1.5.8.jar

• slf4j-log4j12-1.5.8.jar (or another logging framework facade)

• log4j-1.2.14.jar (or another logging framework)

In order to access WQuery programmatically you have to instantiate an object of the class
org.wquery.WQuery by invoking its static method getInstance. After obtaining WQuery
instance you may execute queries by calling the execute method.
Example: To be written

Registering custom wordnet loaders
To be written...

Registering custom functions
To be written...

Using custom emitters
To be written...

22

Appendix A. Tools reference
WGUIConsole

To be written...

WConsole
To be written...

23

Appendix B. Built-in functions
Table B.1. Scalar functions.

Function Argument Result

abs(x) x - float or integer
absolute value of x - float or
integer

ceil(x) x - float
the smallest integer that is greater
than or equal to x - float

floor(x) x - float
the largest integer that is lower
than or equal to x - float

length(x) x - string length of x - integer

log(x) x - float the natural logarithm of x - float

lower(x) x - string lowercased x - string

power(x,y)
x - float or integer, y - float or
integer

x raised to the power of y - float
or integer

replace(x, y, z) x - string, y - string, z - string
replace substring of x matching
regular expression y with z -
string

substring(x, y, z) x - string, y - integer, z - integer substring of x from y to z - string

upper(x) x - string upercased x - string

Table B.2. Aggregate functions.

Function Argument Result

avg(x) x - string or float average value of x - float

count(x) x - any x count - integer

distinct(x) x - any set built from values of x

max(x) x - string, float or integer
maximal value of x - string, float
or integer

min(x) x - string, float or integer
minimal value of x - string, float
or integer

size(x) x - any x tuples sizes

sort(x) x - any sorted x

sum(x) x - float or integer sum of x - float or integer

