WQuery 0.4.0

User Guide (outdated)
Marek Kubis



WQuery 0.4.0: User Guide (outdated)
Marek Kubis
Copyright © 2007-2011 Marek Kubis




Table of Contents

PrE AR ..t e Vi
L. GEING SEAITEA ....ceeeee ettt ettt e e e et e e et e et e e e e e err e 1
PrEIEOUISITES ... ettt ettt e et e e e s 1
DOWNIOBA ...ttt ettt ettt ettt et 1
INSEBITALTION ...t ettt et e 1
RUNNING the CONSOIE ......ieiiit et 1
WQUENY DBSICS ...ttt ettt ettt e e ettt e ettt e ettt e e et et e e e et e e e enbn e eees 3

N XL SIS .ttt 6

2. LangUBOE FEFEIEINCE ...ttt ettt e 7
DELA LYPES ... ettt ettt 7
BaSIC Aala LYPES ...ttt 7

U S e et 7

REIBLIONS ...ttt et e 7

(€1 0 £ (0] £ TP PP PP 8
PLNS ... 11
REIELIONEI EXPIESSIONS ... ieeii ettt ettt ettt 11
L= £ PP PPPPT 12
Dataset-oriented conditional OPEratorsS .........ccuuueiiiiiieeiiir e 13
Value-oriented conditional OPEratorS ...........ueieiuenieieiiie et 14

(oo o] o = = (o] (= T PP SPPPTN 14

FUNCEIONS ...ttt et ettt e e et e e ettt e e e e et e e e eebe e eeenes 15
ATTTAMELICS ... ettt e e e 16

Pt EXPIESSIONS .....cieiit ettt 16
IMPEFELIVE EXPIESSIONS ... eieeti ettt ettt ettt e e ettt e e et e et et e e e e et e e e e aba s 17
EMISSIONS ...t 17

1S = 0] £ TP 17
CONAITIONAIS ...ttt ettt e et e e e et e e eene e eeees 18

BIOCKS .ttt 19
ASSIGNIMENES ..ttt et e et ettt e ettt e e et et e e et et e e e e rb e e era e aee 19

3. AGVANCED TOPICS ...eevvteeeeit ettt ettt et e e e et e et e et e e e s 21
Embedding the iINTENPIrater ........... i et 21
Registering custom Wordnet I0B0EIS ..........viveiiieiiii e 21
Registering cuStom fUNCHIONS ........coouuiiiiiiii e e e 21
USING CUSLOM EIMITEEIS ..oeeeee ettt ettt ettt et et et et eeeaae e e e eneas 21

AL TOOIS FEFEIEINCE ...ttt ettt e et e et eeeab s 22
WGUICONSOIE ...ttt et ettt et e e e ab e e enaans 22
WMVCONSOIE ...ttt ettt et e e 22

B. BUIIt-IN TUNCHIONS ...t et e e e e e e e e enb e e 23




List of Tables

2.1, ODIIQAOrY FEIBHIONS. ...eevuieeiiiie ettt ettt et e et et e et e e e e ebe s 8
2.2. REIAIONAl OPEIBIONS. ... iieiti ettt ettt ettt ettt et e e e 12
2.3. Dataset-oriented conditional OPEratOrS. ........eeieriiieeiiiie et 13
2.4. Value-oriented conditional OPEIaOrS. ..........eeeeuuuieeeiiiie et 14
2.5. Value-oriented conditional OPEIaOrS. ...........eeeeuuueeeiiiie ettt et 15
2.6. ATTNMELIC OPEIELIOIS. .. eeti ittt e e et e et e e e et e e e e aan s 16
2.7, PaN OPEIBIOIS ...ttt ettt ettt ettt 16
B.1. SCAlAr TUNCLIONS. .....eiiitiieeeeet et e ettt e e et eeene s 23
B.2. AQQregate FUNCLIONS. ........uuuiiiiii ettt et e et e e e e enans 23




List of Examples

2.1, BOOIEAN GENEIGEOTS ... ceeetiee et ettt ettt e et e et e e et et e e et et e e e e et e e e e enan s 8
A 14 (e = e = 0 o o] £ T PP PTPPTN 8
2.3, FlOBE GENEIGLIOIS ...ttt ettt ettt e ettt e e et et e e et et e e et et e e e eeba e eeee 9
2.4, SHING GENEIGIOIS ....eeeeite et ettt e et e et e et et e e et et e e et et e e et et e e e e et aeeeebaa s 9
2.5. Generating all WOrd OIS ... .oiiii et e enaans 9
2.6. AN UNIQUE WOIT SENSE GENEIBEON ....eeietieeeeiti e e ettt e e e eete e e e eete e e et et e e e eett e e e eete e eeeennaeeene 10
2.7. A NON-UNIiqUE WOId SENSE GENEIGIOT .....vuueiiitteeeeeii e ettt e e ettt e ettt eeeet e e e e et e e e eebeaeaeens 10
2.8. Generating all WO SENSES .....covuueiiiii ettt et ettt et 10
2.9. A word fOrms t0 SYNSELS GENEIAIOT ......uuuiieetieeeeii ettt e ettt e e e e e e e eanans 10
2.10. A WOrd SenSeS t0 SYNSELS GENEIBION .. ...eieerieeeeiti e eeeei ettt e ettt e e e e et e e e ena e eeeens 10
211, Generating all SYNSELS .. ..ceii e 10
2120 A SIMPLE PELN ... 11
2.13. ANOther SIMPIE PAEN ...coeei e 11
P S < L= o (0] £ T TP TPPPPTTRTUPPIN 11
2.15. A TranSItIVE ClOSUIE ...ttt ettt e e et e et e e e et e e eera e eeens 12
2.16. A tranSitive ClOSUIE BlIAS .. ...uuuueiiiii ettt e e e 12
207, A SIMPLE TIIEN e e 12
2.18. BaCKWAIT FEFEIENCE ... ittt ettt e et e e e e e eene 13
2.19. IMPLICIE FEFEIEINCE ... ettt ettt et e e e e e e enan s 13
2.20. FIITEN GENEIALOL .. .eieitt ettt ettt e e ettt e ettt e ettt e e et et e e e et b e e e enta e eeee 13
2.21. DaLaSEL COMPAITSONS ... eeeettn ettt e ettt e et eet e et eet e e ettt e e e ee b e e e e eabreeeesbaaeeeeatn s eeeentnaaaees 14
2.22. VAlUE COMPBITSONS ...vueeeiii e ettt e ettt e et e et e ettt e e et et e e et et e et et e e e e et e e e eaa s 14
2.23. LOQIC OPEIBLIONS ....eeeeeiieeeeti ettt ettt et e ettt e et e e ettt e e e e e 15
2.24. Sample SCAlar TUNCLIONS ...ttt e e e e e e eenes 15
2.25. Sample aggregate fUNCLIONS .........ouueiiiii et e e 16
2.26. Sample arithmetiC OPEIaLiONS ..........uuiieiii ettt e e 16
2.27. Path @XPIESSIONS ....eeiti ittt ettt et ettt e e e e e e e e e aee 17
2.28. AN BIMISSION ..ottt e s 17
A R (N (< g (o PSP TUPPPTR 18
2.30. The SOMt FUNCHION ..ooeeiiiiei et e e 18
231 The di StiNCE FUNCLION ....oo.uiii et 18
2.32. A CONAITIONGL ...eeeeeiet ettt e e e et e et e e e 18
233 AN ESE BIOCK ... e 19
234 A BIOCK .o e 19
2.35. AN GSSIGNMIENT ..ttt ettt e et e et et ettt a e 20
2.36. HIdden DINGING ......oooeeeieiei et 20




Preface

WQuery is a domain specific query language designed to process wordnet-like lexical ontologies. It
operates on wordnet-related terms like synsets, word senses, word forms etc. It is especially useful for
dealing with elaborate querying tasks like searching for cyclesin semantic relations or calculating average
depth of synsets participating in hypernymy hierarchy. WQuery operates on platforms that provide Java
Runtime Environment and works with wordnets stored in XML files. It may be used as a standalone
application or asan API to alexical ontology in Java based systems.

This document is awork in progress. Some parts are marked by the To Be Written label. The document
refersto WQuery 0.5.0. The complete user guide will be distributed with WQuery 1.0.0.

Vi



Chapter 1. Getting started

Prerequisites

WQuery requires Java Runtime Environment (JRE) version 1.5 or higher. The latest JRE can be found at
http://java.sun.com/javase/downl oads/index.jsp .

Download

The latest version of WQuery may be downloaded from http://www.wquery.org/download.html.

Installation

Unzip the downloaded package anywhere. WQuery is ready to use.

Running the console

Change into the unzipped directory and runwgui consol e. bat (wgui consol e on Linux). You will
see the following screen.

(2 () WaQuery Console © e ®
File Help
Plain | XML

From the File menu pick the Load Wordnet... option and choose the file that contains a wordnet.



http://java.sun.com/javase/downloads/index.jsp
http://www.wquery.org/download.html

Getting started

| @] @ Wauery Console ® e ® |
File Help

2] ) Load —_— ®® ()
Look In: ||j wquery-0.3.0 |'| E
I docs
=] libs
[} samplenet.xml

Plail

File Name: [samplenst.xml |
Files of Type: |Glnbal WordNet Grid XML file ‘V‘

Typecount ({}) into the text field in the upper part of the window in order to find how many synsets
exist in the loaded wordnet.

[#) ) momeimarekiprojectsiwqueryisnapshotsiwquery- (&) (A (X
File Help

count({}]

[ Plain I XML

Click the Execute button or hit Alt+E. A result will appear in thetext field in the lower part of the window.




Getting started

(B4 I’j home/marekiprojects/wquery/snapshots/wquery- @ r?' x

File Help
count({})
[ Plain I XML

59

WQuery basics

WQuery operates on wordnet related terms like synsets, word senses and words. For example to check
whether an ontol ogy1 contains the word car one may simply write

car

The system answers

car

If you type the string alblcldl which is not a proper word form in SampleNet the system will answer
(no result)

If you put alblcldl in backquotes like in the query below

“alblcldl®

The system will not treat alblcldl as aword form but as an arbitrary character string and will return it
to the output.

To check if SampleNet contains the second noun sense of person you may type
person: 2:n

In order to find all synsets that contain the word form person one may surround that word with curly
brackets

{ per son}

ror the purpose of this section it is assumed that you have loaded an ontology from the file sanpl enet . xri distributed with WQuery. This
ontology has been derived from Princeton WordNet by selecting synsets which are used by WQuery test suite (seesanpl enet . xim for Princeton
WordNet licensing conditions).




Getting started

The system returns

{ person:1:n individual:1:n soneone:1:n sonebody:1:n nortal:21:n soul:2:n }
{ person:2:n}
{ person:3:n}

Asyou see synsets are represented in the output as lists of word senses surrounded with curly brackets.
Beside wordnet-specific data types you may also use in queries:
e integers
1-7
* floating point numbers
3.4 5e-2
* boolean values
true false

Datasets? may be transformed using dot operator followed by arelation name.3 To find all hypernyms of
synsets that contain the word form person you may type

{person}. hypernym
and to find all glosses of those hypernyms you may submit the following query
{person}. hyper nym desc

If you want to retrieve hypernyms of person synsets together with their glosses you have to surround
chosen path steps with the selection signs< and >.

{ per son}. <hyper nynp. <desc>

By repeating dots you may apply a relation to the step that is located before the one that precedes the
relation step. For example to find person synsets together with their part of speech symbols and glosses
you may write

<{ person}>. <pos>. . <desc>
or

<{ person}>. <desc>. . <pos>
Note: Availablerelations

Relations are extracted from tags found in the wordnet file. For every subtag T of every SYNSET
tag found in the wordnet file the following rules are applied to extract relations:

1. If T equalsILR then the value of the type attribute becomes a rel ation name and the content of
T isinterpreted as a synset identifier to which the relation points.

2. If T equals LITERAL or SYNONYM or WORD it is skipped.

2A dataset in WQuery is abag (multiset) of objects that share the same type.
3such expressions are called paths. Parts of paths separetad by sequences of dots are called steps.




Getting started

3. Otherwise the lowercased name of T becomes a relation name and the content of T is
interpreted as:

» asynset identifier

e or asanumber (if itisnot avalid synset identifier)

» or asaboolean value (if it is not avalid number)

 or asacharacter string (if it isnot avalid boolean value).

Additional relationsmay beinfered using relational operators. For exampleto find all hyponymsof synsets
that contain the word form var you may precede the hypernym relation with the inverse operator ”.

{car}.hypernym

Tofind all transitive hypernyms of synsets that contain the word form car you may succeed the hypernym
relation with the transitive closure operator !.

{car}. hypernym

To find al holonyms of synsets that contain the word form car regardless of the holonymy type you may
combine holonymy relations using the union operator |.

{car}.partial _hol onym mermber _hol onym

More pleasant names may be assigned to relations by using the assignment operator =.
hyper nyns=hyper nym

hyponyns="hyper nym

hol onyns=parti al _hol onym menmber _hol onym

gl oss=def

Datasets may be filtered by providing a conditiona expression between [ and ] signs. To find al noun
synsets that contain the word form car you shall type

{car}[type = "n’]

A filter is applied separately to every element of the predeceasing dataset. Y ou may refer to the element
which is passed to thefilter by using the back reference operator #. The query below returnsall hypernyms
of synsets that contain the word form person except the one that contains the second noun sense of the
word form being.

{person}. hypernyn{# ! = {being: 2: n}]

WQuery providesaset of built-in functionsthat operate on values of datasets. For exampleto count synsets
that contain the word form person you may use the function count as shown below.

count ({ person})
The complete list of built-in functions may be found in Appendix B, Built-in functions.

Paths may be combined together using dataset union, intersection and difference. Y ou may find all person
synsets hypernyms together with all car synsets by using the union operator.

{person}. hypernym uni on {car}

The Cartesian product of datasets returned by two paths may be constructed using the comma operator.




Getting started

{person}, {car}

Beside the expressions presented above WQuery also has a set of imperative expressions like loops,

if-statements and assignments. The complete description of all WQuery expressions may be found in
Chapter 2, Language reference.

Next steps

Read Chapter 2, Language referencein order to master the WQuery language. Read Chapter 3, Advanced
topicsto learn how to customize WQuery and embed it into your own applications. Consult Appendix B,
Built-in functions for adetailed list of functions available in WQuery.




Chapter 2. Language reference
Data types

Basic data types

There are six basic data typesin WQuery: booleans, integers, floats, strings, word senses and synsets.

Booleans have one of two logic values either true or false. They are represented in query results as two
literals shown below.

true false
Integers are represented in query results as strings of decimal digits optionally prefixed with - sign.
123 -4 576 0

Floats (floating point numbers) are represented as strings of decimal digits followed by dot and at |east
one decimal digit. Floats may also be prefixed with - sign.

3.0 -1.2 0.0 2.345
Strings (character data) are passed to the output without any modifications.
appl e person nman-eating shark

Word senses are represented as triples that consist of aword form, a sense number and a part of speech
symbol joined together with colons.

apple:1:n cold:2:a entail:3:v

Synsets are represented as lists of word senses joined together with whitespaces and surrounded with {
and} signs.

{ apple:2:n orchard apple tree:1:n Malus punila:1l:n }

Tuples

Tuples are finite, ordered collections. Every element of atuple has to be an instance of a basic data type.
It is not possible to create a tuple that contains another tuple as an element.

A tupleis represented in a query result as a single line that consists of representations of tuple elements
joined together with spaces. For example a tuple that consists of the synset { appl e: 2: n} followed by
{ per son: 3: n} andtheword form car iswritten as

{ apple:1:n } { person:3:n } car

Relations

Let X and Y mean sets of values of basic datatypes T and U. Every subset of Cartesian product of X and
Y iscalled arelation with predecessor type T and successor type U.

WQuery refersto relations stored in awordnet by their names. Table 2.1, “ Obligatory relations.” describes
relationsthat are available in every wordnet loaded into WQuery. Additional relations are usualy retrieved
as described in Note: Availablerelationsin Chapter 1, Getting started.




Language reference

Table2.1. Obligatory relations.

Relation Predecessor type Successor type Meaning
aidb word sense string t(;fl ?Naonrédgr:gz
aidb synset string b Iz?n S;gsgttg'er

. b is a sense number

asensenumb word sense integer of word sense a

. aisaword form

asenses b string word sense of word sense b
bisaword

asenses b synset word sense sense of synset a

asynsetsb string synset forargiﬁgggt b
aisaword

asynset b word sense synset sense of synset b
bisaword

awords b synset word sense form of synset a

awordb word sense string aisaword form

of word sense b

Generators

A generator is an expression that represents a dataset of objects sharing the same basic data type.

Literalst rue and f al se generate datasets that contain exactly one boolean value.

Example 2.1. Boolean generators

wguery> true
true
wguery> fal se
fal se

A string of decimal digits generates a dataset that contains exactly one integer value. Two strings of

decimals joined together with . . operator generate a dataset that contains a range of integers.

Example 2.2. Integer generators

wguery> 123
123

wquery> 1..5
1

2
3
4
5

A string that represents a floating point number generates a dataset that contains exactly one float.




Language reference

Example 2.3. Float generators

wguery> 12.3
12.3

wguery> 12e3
12000. 0
wguery> 12. 3e3
12300. 0

The content of the multiset generated by a character string depends on signs that surround the string.

» A dataset generated by a character string enclosed in single quotes contains that string if and only if it
isavalid word form in the loaded wordnet. Otherwise the generated dataset is empty.

A dataset generated by acharacter string enclosed in back quotes always contains the surrounded string.

A dataset generated by a character string enclosed in double quotes contains every word form from the
|loaded wordnet that matches a regular expression defined by the surrounded string.

» A dataset generated by a character string that is not surrounded with any quotation marks has the same
content as a dataset generated from that string enclosed in single quotes.

Example 2.4. String generators

wguery> ' person'
per son

wquery> " zzz333"
zzz333

wguery> zzz333
(no result)
wquery> ""zynol "
zynol ogy

zynol ysi s

zynol ytic
wguery> person
per son

Note: Orderingin the output

One may notice in the example above that word forms generated by the " *zynol " expression
are sorted in the output. Sorting is by default applied to all query results except those that are
generated by constructs descibed in the section called “Imperative expressions’. Also if there
existed duplicated elements in the query result they would be removed before passing the result
to the output.

Onemay generateall word formsstored in theloaded wordnet by submitting two single quote signswithout
any characters between then.

Example 2.5. Generating all word forms

wquery> "'
(...)

In order to generate a dataset that contains at most one word sense one may join a character string, a
sense number and a part of speech symbol with colons. The generated multiset will be empty if the loaded
wordnet does not contain requested word sense.




Language reference

Example 2.6. An unique wor d sense gener ator

wquery> 'person':1:n
per son

wguery> 'zzzz':23:n
(no result)

If we omit in the expression above the second colon and the part of speech symbol then al word senses
with the given word form and sense number will be generated.

Example 2.7. A hon-unique word sense gener ator

wguery> set: 2
set:2:n
set:2:v
set:2:s

All word senses stored in the loaded wordnet may be generated by submitting two colon signs.
Example 2.8. Generating all word senses

wguery> ::
(...)

By surrounding an expression that returns a dataset of stringswith{ and} signsone may obtain a dataset
that consists of synsets that contain at least one word form represented by the enclosed expression.

Example 2.9. A word formsto synsets generator

wguer y> {orange}

{ orange: 2: n orangeness:1:n }

{ orange:1l:n }

{ orange:3:n orange tree:1:n }

{ orange:4:n }

{ orange: 1l:s orangish:1l:s }

wguery> {""zynol "}

{ zynmology:1:n zynurgy:1:n }

{ zynosis:1:n zynolysis:1.n fernentation:2:n fernenting: 1:n fernent:3:n }
{ zynotic:1:a zymolytic:1:a }

The same holds for datasets of word senses.
Example 2.10. A word senses to synsets gener ator

wguer y>
wguery> {appl e: 2: n}

{ apple:2:n orchard apple tree:1:n Malus punmila:1l:n }
wguery> {appl e: 2}

{ apple:2:n orchard apple tree:1:n Malus punmila:1l:n }

All synsets stored in the loaded wordnet may be generated by submitting { and } signs without any
expression between them.

Example 2.11. Generating all synsets

wquery> {}
(...)

10



Language reference

Paths

A path consists of a generator followed by zero or more transitions. Each transition begins with one or
more dots followed by a relation name. The generator and the following transitions are called steps. The
result of applying atransition that consits of k dots followed by the relation name Rto an n-th step (1 <=
k <= n) expression on the left of thetransitionisadataset { b| a in D and R(a, b)} whereDis:

1. A dataset returned by the generator of the path if k=n.
2. A result of applying from the | eft to the right n - k transitions to the generator of the path if k< n.

For example to find al hypernyms of a synset that contains the word form car in its first noun sense one
may write

Example 2.12. A smple path

wguery> {car:1:n}.hypernym
{ motor vehicle:1:n autonotive vehicle:1:n }

and to find all senses of hypernyms of the synset above one may write

Example 2.13. Another ssimple path

wguery> {car: 1: n}. hypernym senses
notor vehicle:1:n
autonotive vehicle:1:n

By surrounding chosen path steps with < and > signs one may retrieve results of intermediate transitions.
Theresult of applying selectorsto the chosen k steps consists of k-element tuples such that thei-th element
(1 <= i <= K) of atuple belongs to the dataset generated by a subpath defined by all steps of the path that
precede the i-th > sign on the path. For exampleto find all triplesthat consist of a synset that contains the
word form car followed by itsidentifier and an identifier its hypernym one may write

Example 2.14. Selectors

wguery> <{car}>. <id>..hypernym <i d>
cable car:1:n car:5:n } 102934451 103079741

car:2:n
car:4:n elevator car:1:n } 102960352 103079741
car: 3:n gondol a:3:n } 102960501 103079741

latn Xate Nate Wate Was

As shown in the exampl e above consecutive tuple elements are separated in the output with single spaces.

Relational expressions

A relational expression consists of one or more relations combined together with operators shown in
Table 2.2, “Relational operators.”. Therelational expression may be used in atransition instead of asingle
relation.

In order to find all transitive hypernyms of synsets that contain the word form person one may write

11

car:1l:n auto:1l:n autonobile:1l:n machine: 6:n nmotorcar:1:n } 102958343 103791235
railcar:1l:n railway car:1:n railroad car:1:n } 102959942 104576211



Language reference

Example 2.15. A transitive closure

wguery> {person}. hypernym

entity:1:n }

physical entity:1:n }

organism1l:n being:2:n }

causal agent:1:n cause:4:n causal agency:1l:n }

human body: 1: n physical body:1:n material body:1:n soma:3:n build:2:n
figure:2:n physique:2:n anatony: 2: n shape: 3:n bod: 1: n chassis: 1:n
frame:3:n form5:n flesh:2:n }

{ grammatical category:1:n syntactic category:1l:n }

Lot Nt Watn Waan Waa

Table 2.2. Relational operators.

Operator Expression Result

inversion Ar (b,a) such that (a,b) belongstor

(a,b) such that (a,b) belongstor or there exist ay, ..., ax such

iti |
transitive closure r that (a,a1), (a1,82), - (&, b) belong tor
union riq tsuch that t belongstor orq
intersection r&q tsuch that t belongstor and g

By using = operator one may assign a name to arelational expression and use it in the following queries.
For example one may define an alias for transitive hypernymy

t hyper =hyper nym

and use it as shown in the query below

Example 2.16. A transitive closure alias

wguery> {person}.thyper

entity:1:n }

physical entity:1:n }

organism1:n being:2:n }

causal agent:1:n cause:4:n causal agency:1:n }

human body: 1: n physi cal body: 1:n material body:1:n soma:3:n build:2:n
figure:2:n physique:2:n anatony: 2: n shape: 3:n bod: 1. n chassis: 1:n
frame:3:n form5:n flesh:2:n }

{ grammatical category:1:n syntactic category:1l:n }

Filters

A filter is an expression placed after a path step to select some elements from the generated dataset. The
filter consists of aconditional expression surrounded with[ and] signs. Each element of the dataset being
filtered is passed separately to the filter and may be referenced inside it by using # sign.

latn Nate Nate Wate Wate

To find al synsets that contain the word form person except the one that contains that word form in its
thirdh noun sense one may write

Example 2.17. A ssimplefilter

wguery> {person}[# ! = {person: 3:n}]
{ person:1:n individual:1:n soneone: 1:n sonebody: 1:n nortal :1:n soul:2:n }
{ person:2:n }

12



Language reference

Objects that precede on the path the element that is analyzed in the current pass may be referenced by
repeating # sign.

..................................... The following query returns all hyponyms of synsets that contain the word form
person having the same number of words as their hypernyms one may wrtie

Example 2.18. Backward reference

wguer y> {person}. hypernyni count ( #. wor ds) <count ( ##. wor ds) ]
{ organism11l:n being:2:n }

{ causal agent:1l:n cause:4:n causal agency:1l:n }

A reference may be omitted if it consists of exactly one # sign and is followed by at least one step. The
expression written above may be rephrased as follows

Example 2.19. Implicit reference

wguer y> {person}. hyponyns[ count (words) = count (##. words)]
{ organism11l:n being:2:n }

{ causal agent:1l:n cause:4:n causal agency:1l:n }

A filter may also be used independently as a boolean generator.

Example 2.20. Filter generator

wquery> [1 < 2]
true

The following subsections describe three types of operators that are allowed in filters.

Dataset-oriented conditional operators

The operators listed in Table 2.3, “Dataset-oriented conditional operators.” are binary operators that
compare pairs of datasets.

Table 2.3. Dataset-oriented conditional operators.

Operator Expression Result
dataset equality X =y true iff datasets generated by x and y are equal
dataset inequality X =y true iff datasets generated by x and y are not equal
dataset inclusion xiny true iff the dataset generated by x is a subset of the one
generated by y
dataset proper . true iff the dataset generated by x is aproper subset of the
X : X piny
inclusion one generated by y

Example 2.21, “Dataset comparisons’ consists of queries that involve dataset-oriented conditional
operators.

13



Language reference

Example 2.21. Dataset comparisons

wguery> [{person: 1:n} = {person}]
fal se

wguery> [{person: 1:n} in {person}]
true

wquery> [{person: 1:n} pin {person}]
true

wguery> [{person} != {person}]
fal se

Value-oriented conditional operators

The operatorslistedin Table 2.4, “Vaue-oriented conditional operators.” are binary operatorsthat are able
to compare only those datasets that contain at most one element. Compared elements have to belong to
the same data type.

The following rules hold while comparing two values:

* Numbers are compared using natural ordering.

* Strings are compared by assuming lexicographical order.

» Theboolean valuef al se isassumed to be lesser thant r ue.

e Theresult of comparing synsets or word sensesis undefined.

Table 2.4. Value-oriented conditional operators.

Operator Expression Result
trueiff X andy contain exactly one element and the element
lesser than X <y S .
inx islesser than theoneiny
lesser than x <= trueiff x andy contain exactly one element and the element
or equal -y in X islesser than or equal to the oneiny

trueiff x andy contain exactly one element and the element

greater than x>y in X isgreater than theoneiny
greater than X >z trueiff x andy contain exactly one element and the element
or equal R in X is greater than or equal to theoneiny

Example 2.22, “Vaue comparisons’ consists of queries that involve some of value-oriented conditional
operators.

Example 2.22. Value comparisons

wguery> [ person < individual]

fal se

wquery> [1 <= 1]

true

wguery> [true > fal se]
true

Logic operators

The operators listed in Table 2.5, “Vaue-oriented conditional operators.” may be used to combine
conditional expressions.

14



Language reference

Table 2.5. Value-oriented conditional operators.

Operator Expression Result
conjunction X and y trueiff both x andy aretrue
digunction X or vy trueiff x ory istrue

negation not x trueiff x isnot true

Example 2.23, “Logic operations’ presents expressions that involve logic operators.

Example 2.23. L ogic oper ations

wguery> {}[car in words and gondol a i n words]

{ car:3:n gondola:3:n }

wguery> {}[car in words or gondola in words]

cable car:1:n car:5:n }

car:1:n auto:1:n autonobile:1:n machine:6:n nmotorcar:1:n }
car:2:n railcar:1:n railway car:1:n railroad car:1:n }
car:4:n elevator car:1:n }

car: 3:n gondola:3:n }

uery> {}[car in words and not gondola in words]

cable car:1:n car:5:n }

auto: 1:n automobile:1:n }

car:2:n railcar:1:n railway car:1:n railroad car:1:n }
car:4:n elevator car:1:n }

Functions

A call to afunction consists of a function name followed by an expression surrounded with parentheses.
WQuery functions fall into two categories:

.-»q.-»q.-»q,-»q_é e e R

aggregate functions Thesefunctionsareinvoked directly on adataset returned by the expression
between parentheses.

scalar functions These functions are invoked separately for every tuple that belongs to a
dataset returned by the expression between parentheses and the result isa
sum of results returned by all invocations.

Thelist of al built-in functions may be found in Appendix B, Built-in functions.

Example 2.24. Sample scalar functions

wguer y> upper ({car: 1}.words)
AUTO

AUTOMOBI LE

CAR

MACHI NE

MOTORCAR

wguery> | engt h({car: 1}. words)
3

4

7

8

10

15



Language reference

Example 2.25. Sample aggr egate functions
wguery> count ({car: 1}. wor ds)
5

wguer y> max({car: 1}.words)
not or car

Arithmetics

Arithmetic expressionsin WQuery utilize paths and functions that return integers and floats.

Example 2.26. Sample arithmetic operations

wguery> 2 + 3

5

wguery> count ({car: 1}.words) + count({car: 3}.words)

7

wguery> max(l ength({car}.words)) - min(length({car}.words))
9

Operators available in arithmetic expressions are shown in Table 2.6, “ Arithmetic operators.”.

Table 2.6. Arithmetic operators.

Operator Expression Result
unary minus - X negation of x
unary plus +X unchanged value of x
addition X +y sum of x andy
subtraction X -y difference of x andy
multiplication X *y product of x and y
division x 'y quotient of x and y
modulo X %y ;emai nder from division of x by

Path expressions

A path expression consists of one or more paths combined together using operators shown in Table 2.7,
“Path operators’.

Table2.7. Path operators

Operator Expression Result
path union X union vy union of datasets generated by x andy

path intersection

X intersect y

intersection of datasets generated by x andy

path difference x except y |difference of datasets generated by x andy
adataset that consists of all tuples (ay, ..., ak, by, ..., bn)
path product X, Y such that (ay, ..., a) belongs to a dataset generated by x and

(by, ..., by) belongsto a dataset generated by y

16




Language reference

Example 2.27. Path expressions

wguery> {car:1:n} union {car:3:n}

{ car:1:n auto:1l:n autonobile:1l:n nachine:6:n notorcar:1:n }
{ car:3:n gondola:3:n }

wguery> {car} intersect {car:1l:n}

{ car:1:n auto:1l:n autonobile:1l:n nachine:6:n notorcar:1:n }
wguery> {car} except {car:2:n}

{ cable car:1:n car:5:n }

{ car:1:n auto:1l:n autonobile:1l:n nachine:6:n notorcar:1:n }
{ car:4:n elevator car:1:n}

{ car:3:n gondola:3:n }

wguery> {appl e}, {set}

{ apple:1:n } { set:2:n}

{ apple:1:n } { deternmne:3:v set:2:v }

{ apple:1:n } { fixed:2:s set:2:s rigid:5:s }

{ apple:2:n orchard apple tree:1:n Malus punila:1l:n } { set:2:n}

{ apple:2:n orchard apple tree:1:n Malus punila:1l:n } { deternine:3:v
set:2:v }

{ apple:2:n orchard apple tree:1:n Malus punila:1l:n } { fixed:2:s
set:2:s rigid:5:s }

Imperative expressions

Path expressions described in the previous section may be used to construct five types of imperative
expressions. emissions, iterators, conditionals, blocks and assignments.

Emissions
emt path_expr

An emission passes tuples generated by the path expression pat h_expr to the output.

Example 2.28. An emission

wquery> enit {person: 1l:n}.words
soul

i ndi vi dual

sonmebody

someone

nort al

per son

Ilterators

fromvar_decls in path_expr inmp_expr

Aniterator executestheimperativeexpressioni np_expr for every tuple generated by the path expression
pat h_expr . Variables from the comma separated list var _decl s are substituted with consecutive
gslements of atuple processed inthe current pass. Those variablesmay be used asgeneratorsini np_expr .

2V ariable names are prefixed with $ sign.

17



Language reference

Example 2.29. An iterator

wguery> from $a in {person}.words enmt $a
person

soul

i ndi vi dual

sonebody

soneone

nort al

person

person

In the example above theimperative expression built from an iterator and an emission returns a dataset that
isnot sorted and contains duplicated elements. In order to sort adataset one haveto usethesort function.

Example 2.30. Thesort function

wguery> from $a in sort({person}.words) ent $a
i ndi vi dual

nort al

person

person

person

somebody

someone

soul

Duplicates may be removed from a dataset by thedi sti nct function.

Example 2.31. Thedi sti nct function

wguery> from $a in distinct(sort({person}.words)) enit $a
i ndi vi dual

nort al

person

sonebody

someone

soul

Conditionals
i f path_expr inmp_expr
A conditional executestheimperative expressioni np_expr if the path expression pat h_expr istrue.
Note: Truth in WQuery

A path expression is considered to befalseif it generates adataset that is either empty or includes
exactly one tuple that consists entirely of boolean elements and at least one of those elementsis
false. Otherwise the expression is considered to be true.

Example 2.32. A conditional

wgquery> if [2 + 2 = 4] emt “ufff...”
ufff...

18



Language reference

A conditional may have also an optiona else block which is executed if pat h_expr isnot true. The
resulting conditional looks as follows

if path_expr inp_expr else else_expr
Example 2.33. An else block

wguery>
if [bus in {car}.words]
emt {bus}
el se
emt “no "bus" word found in "{car}.words""

no "bus" word found in "{car}.words"

Blocks
do inp_expr_1 ... inpr_expr_n end
A block executes sequentially imperative expressionsi mp_expr _1 toi np_expr _n.
Example 2.34. A block

wguer y>

do
emt {person:3:n}
emt car:2:n
emt apple

end

{ person:3:n}

car:2:n
appl e

Assignments
var _decls = path_expr

An assignment binds variables from the comma separated list var _decl s to consecutive values of a

tuple generated by the path expression pat h_expr . The pat h_expr expression shall return exactly
onetuple.

19



Language reference

Example 2.35. An assignment

wguer y>
do
$a, $b
if [$b

<{car:1:n}> <desc>
~ “engi ne’]
emt $a.words

end

machi ne
not or car
aut onobi | e
aut o

car

Variable bindings are accessible in al expressions that follow the assignment and are placed in the scope
of the block which surroundsiit. Bindings in the inner block hide the ones defined in the outer blocks.

Example 2.36. Hidden binding

wquer y>
do
$a, $b =1, 2
do
$b = 3
emt $a
emt $b
end
emt $a
emt $b
end
1
3
1
2

20



Chapter 3. Advanced topics

This chapter covers topics important only in specific WQuery use cases.

Embedding the interpreter

WQuery may be easily embedded into your own application. The following libraries must be added to the
application classpath if you want to use WQuery:

* wguery- VERSI ON. j ar

e scala-library-2.7.5.jar

e slf4j-api-1.5.8.jar

» sl f4j-1o0g4j12-1.5. 8.jar (or another logging framework facade)

* | 0g4j-1.2.14. ] ar (or another logging framework)

In order to access WQuery programmatically you have to instantiate an object of the class
org. wguery. Wuery by invoking its static method get | nst ance. After obtaining WQuery

instance you may execute queries by calling the execut e method.
Example: To be written

Registering custom wordnet loaders

To be written...

Registering custom functions

To be written...

Using custom emitters

To be written...

21



Appendix A. Tools reference
WGUIConsole

To be written...

WConsole

To be written...

22



Appendix B. Built-in functions

TableB.1. Scalar functions.

Function Argument Result

absolute value of x - float or

abs(x) x - float or integer integer

the smallest integer that is greater

cail(x) X float than or equal to x - float
the largest integer that islower
floor(x) X~ float than or equal to x - float
length(x) X - string length of x - integer
log(X) x - float the natural logarithm of x - float
lower (X) X - string lowercased x - string
power (x.y) X - float or integer, y - float or X r_amd to the power of y - float
integer or integer
replace substring of x matching
replace(x, Y, 2) X - string, y - string, z - string regular expression y with z -
string
substring(x, v, 2) X - string, y - integer, z- integer | substring of x fromy to z - string
upper(x) X - string upercased X - string
Table B.2. Aggregate functions.
Function Argument Result
avg(x) X - string or float average value of x - float
count(x) X - any X count - integer
distinct(x) X - any set built from values of x
max(X) X - string, float or integer maximal value of x - string, float
or integer
min(x) X - string, float or integer mini mal value of x - string, float
or integer
size(x) X - any X tuples sizes
sort(x) X - any sorted X
sum(x) x - float or integer sum of x - float or integer

23



